
Probabilistic Noninterference in a

Concurrent Language y

Dennis Volpano

Computer Science Department

Naval Postgraduate School

Monterey� CA ������ USA

volpano�cs�nps�navy�mil

Geo�rey Smith

School of Computer Science

Florida International University

Miami� FL ������ USA

smithg�cs�fiu�edu

Abstract

In ����� we give a type system that guarantees that

well�typed multi�threaded programs are possibilistically

noninterfering� If thread scheduling is probabilistic�

however� then well�typed programs may have probabilis�

tic timing channels� We describe how they can be elim�

inated without making the type system more restrictive�

We show that well�typed concurrent programs are prob�

abilistically noninterfering if every total command with

a high guard executes atomically� The proof uses the

concept of a probabilistic state of a computation� fol�

lowing the work of Kozen ������

�� Introduction

This work is motivated by applications of mobile
code where programs are downloaded� as needed� and
executed on a trusted host �examples include web
browsers and e�commerce applications for smartcards
and set�top boxes�	 Here a host may have sensitive
data that downloaded code may need� and we want as�
surance that they are not leaked by the code	 In some
cases� the best approach may simply be to forbid any
access to the sensitive data� using some access control
mechanism	 But often the code will legitimately need
to access the data in order to function	 In this case� we
need to ensure that it is not leaked by the code	

Speci
cally� this paper is concerned with identify�
ing conditions under which concurrent programs can

yThis is a corrected version of the paper that appeared in the

Proceedings of the ��th IEEE Computer Security Foundations

Workshop� Rockport� MA� ���� June ����� pages ������
�This material is based upon activities supported by DARPA

and by the National Science Foundation under Agreement Nos�

CCR��	�
��	 and CCR��	�
����

be proved free of probabilistic timing channels	 Previ�
ous work has centered around developing a type system
for which one can prove that well�typed multi�threaded
programs have a possibilistic noninterference property
����	 The proof relies on a purely nondeterministic
thread�scheduling semantics	 But although the prop�
erty rules out certainty in deducing private data� its
practical utility is somewhat questionable	 The trou�
ble is that thread scheduling is usually probabilistic in
real implementations� and in this case it is easy to con�
struct well�typed programs with probabilistic timing
channels	 Here we show how to rule out such channels
without making the type system more restrictive	

1.1. The basic idea

Consider a simple imperative language with threads
where each thread is a sequence of commands and
threads are scheduled nondeterministically	 A thread
may access a shared memory through variables which
are classi
ed as low �public�� or high �private�	 We
want to ensure that concurrent programs cannot copy
the contents of high variables to low variables	

Now suppose x is a high variable whose value is ei�
ther � or �� y is a low variable and c is some command
that takes many steps to complete	 Then consider the
following program�

� Thread ��

if x � � then �c�c��

y �� �

� Thread ��

c�

y �� �

The program is well typed in the secure �ow system of
����� so it satis
es a possibilistic noninterference prop�

erty	 Changing the initial value of x does not change
the set of possible
nal values for y	

But suppose the two threads are scheduled by �ip�
ping a coin	 Then the threads run at roughly the same
rate and the value of x ends up being copied into y with
high probability	 So there is probabilistic interference
when thread scheduling obeys a probability distribu�
tion� even when the program is well typed	 A change
in the initial value of x changes the probability distri�

bution of
nal values of y	

One obvious way to treat the program is through the
type system	 We might adopt the severe restriction
that guards of conditionals be low	 In this case� the
example is rejected because it is no longer well typed	
Another approach is to require that the conditional be
executed asynchronously �
�	 But there are cases where
you want a conditional to execute synchronously	

Another strategy is to extend the language in some
way that allows one to use high guards in condition�
als� provided a certain �machine�checkable� condition
is satis
ed	 This is the approach we take	 In fact� the
condition we impose is very simple	 We require that
conditionals with high guards be executed atomically	
This is accomplished by wrapping the conditional with
a new command� called protect ����� that guarantees
the conditional will be executed atomically in a multi�
threaded environment	 We will show that such well�
typed programs satisfy a probabilistic noninterference
property� which says that the probability distribution
of the
nal values of low variables is independent of the
initial values of high variables	 In general� the property
requires that any total command with a high guard
must be protected	 These commands include primitive
recursion and other forms of guarded statements found
in programming languages	

�� Syntax and semantics

Threads are expressed in a simple imperative lan�
guage�

�phrases� p ��� e j c

�expressions� e ��� x j n j e� � e� j
e� � e� j e� � e�

�commands� c ��� x �� e j c�� c� j
if e then c� else c� j
while e do c j
protect c

Metavariable x ranges over identi
ers and n over in�
teger literals	 Integers are the only values� we use �
for false and nonzero for true	 Note that expressions

do not have side e�ects� nor do they contain partial
operations like division	

We de
ne a small�step transition semantics for indi�
vidual threads in Figure �	 We assume that expressions
are evaluated atomically	� Thus we simply extend a
memory � in the obvious way to map expressions to
integers� writing ��e� to denote the value of expression
e in memory �	 These rules de
ne a transition relation
s
�� on con
gurations	 A con�guration is either a pair
�c� �� or simply a memory �	 In the
rst case� c is the
command yet to be executed� in the second case� the
command has terminated� yielding
nal memory �	

At most one thread can be in a protected section at
any time	 We capture this property by appealing to
a standard natural semantics for commands in the hy�
pothesis of rule atomicity� written here as � � c� ��	
The hypothesis means that command c evaluates com�
pletely to a memory �� from a memory �	 This is the
trick for expressing the atomicity of command execu�
tion that allows for a simple noninterference proof	 Our
natural semantics is standard and is described in ����	
Further� we assume that protected sections are not
nested	 This is a reasonable assumption since protected
sections are transparent in a sequential language� which
is what the natural semantics treats	 Thus we avoid
having to introduce a rule for protect into the natural
semantics	 Finally� we assume that no while command
occurs in a protected section	 The reason for this is to
simplify our probabilistic semantics	 With protect�
execution of a thread may block�

protect while true do skip

One needs to compute the probability of a thread be�
ing selected from among the unblocked threads only	
By prohibiting the potential for nontermination in a
protected section� we are guaranteed that all threads
in a thread pool are unblocked in that each can make a
transition under

s
��	 Thus� the probability of a thread

being selected from a thread pool O can be determined
simply from the size of the pool �jOj�	

As in ����� we take a concurrent program to be a
set O of commands that run concurrently	 The set O
is called the thread pool and it does not grow during
execution	 We represent O as a mapping from thread
identi
ers ��� �� 	 	 	 � to commands	 In addition� there
is a single global memory �� shared by all threads�
that maps identi
ers to integers	 Threads communi�
cate via the shared memory	 We call a pair �O� ���
a global con�guration	 Execution of a concurrent pro�
gram takes place under a
xed probability distribution

�The noninterference property we prove does not depend on

atomicity here unless the time it takes to evaluate an expression

depends on the values of high variables�

�

�update� x � dom���

�x �� e� ��
s
����x �� ��e��

�sequence� �c�� ��
s
����

�c�� c�� ��
s
���c�� �

��

�c�� ��
s
���c��� �

��

�c�� c�� ��
s
���c��� c�� �

��

�branch� ��e� nonzero

�if e then c� else c�� ��
s
���c�� ��

��e� � �

�if e then c� else c�� ��
s
���c�� ��

�loop� ��e� � �

�while e do c� ��
s
���

��e� nonzero

�while e do c� ��
s
���c�while e do c� ��

�atomicity� � � c� ��

�protect c� ��
s
����

�global� O��� � c

�c� ��
s
����

p � ��jOj

�O� ��
g
��p�O � �� ���

O��� � c

�c� ��
s
���c�� ���

p � ��jOj

�O� ��
g
��p�O�� �� c��� ���

�f g� ��
g
����f g� ��

Figure 1. Sequential and concurrent transition semantics

�

for the scheduling of threads� our semantics prescribes
a uniform distribution for simplicity	 The execution is
de
ned by rule global� which lets us prove judgments
of the form

�O� ��
g
��p�O

�� ����

This asserts that the probability of going from �O� ��
to �O�� ��� is p	 The
rst two global rules in Figure �
specify the global transitions that can be made by a
thread pool	 The third global rule is introduced to
accommodate our notion of a probabilistic state	 As
we shall see� it ensures that probabilities of a state
sum to �	 With these global rules� we can represent a
concurrent program as a discrete Markov chain ���	 The
states of the Markov chain are global con
gurations

and the stochastic matrix is determined by
g
��p	

�� The type system

Here are the types used by our type system�

�data types� � ��� L j H
�phrase types� � ��� � j � var j � cmd

For simplicity� we limit the security classes here to just
L and H � it is possible to generalize to an arbitrary
partial order of security classes	

The type system is the system of ����� extended with
a rule for protect	 Its rules are given in Figure �	 The
rules allow us to prove typing judgments of the form
� � p � � as well as subtyping judgments of the form
�� � ��	 Here � denotes an identi�er typing� which is
a
nite function from identi
ers to phrase types	 Note
that guards of conditionals may be high	

If � � c � � for some �� then we say that c is well

typed under �	 Also� if O��� is well typed under � for
every � � dom�O�� then we say that O is well typed
under �	

�� Probabilistic states

Loosely speaking� our formulation of probabilistic
noninterference is a sort of probabilistic lock step exe�
cution statement	 Under two memories that may di�er
on high variables� we want to know that the probability
that a concurrent program can reach some global con�

guration under one of the memories is the same as the
probability that it reaches an equivalent con
guration
under the other	

A concurrent program is represented as a discrete
Markov chain ���� the states of which are global con
g�
urations �O� ��	 The stochastic matrix T of the Markov

chain is determined by the relation
g
��p	 For example�

consider the following program�

O � f� �� while l � � do skip� � �� �l �� ��g

The program can get into at most
ve di�erent con
g�
urations� and so its Markov chain has
ve states� given
in Figure �	 The stochastic matrix T for this Markov
chain is given in Figure �	 The probability of a transi�

� � � � �
� � ��� ��� � �
� � � � � �
� ��� � � ��� �
� � � � � �
� � � � � �

Figure 4. Stochastic matrix

tion from state �� for instance� to state � is ��� because
p � ��� in the hypothesis of the
rst global rule� the
rule that allows this transition to occur	

The set of Markov states may be countably in
nite
�a simple example is a nonterminating loop that in�
crements a variable�	 In this case� the stochastic ma�
trix is also countably in
nite	 In general� if T is a
stochastic matrix and T ��O� ��� �O�� ���� 	 �� for some
global con
gurations �O� �� and �O�� ���� then either O
is nonempty and T ��O� ��� �O�� ���� � ��jOj� or O and
O� are empty� � � ��� and T ��O� ��� �O�� ���� � �	

Kozen uses measures to capture the distributions of
values of variables in probabilistic programs ����	 Our
strategy is similar	 Using the Markov chain� we can
model the execution of a concurrent program deter�
ministically as a sequence of probabilistic states 	

De�nition ��� A probabilistic state is a probability

measure on the set of global con�gurations�

A probabilistic state can be represented as a row
vector� whose components must sum to �	 So if T is a
stochastic matrix and s is a probabilistic state� then
the next probabilistic state in the sequence of such
states modeling a concurrent computation is simply
the vector�matrix product sT 	 For instance� the initial
probabilistic state for the program O in our preceding
example� with
ve states� is �� � � � ��	 It indicates
that the Markov chain begins in state � with certainty	
The next state is given by taking the product of this
state with the stochastic matrix of Figure �� giving
�� ��� ��� � ��	 This state indicates the Markov
chain can be in states � and �� each with a probability
of ���	 Multiplying this vector by T � we get the third
probabilistic state� ���� � � ��� ����� we can de�
termine the complete execution in this way	 The
rst

�

�ident� ��x� � �
� � x � �

�int� � � n � �

�r�val� � � e � � var

� � e � �

�sum� � � e� � �� � � e� � �
� � e� � e� � �

�assign� � � x � � var � � � e � �
� � x �� e � � cmd

�compose� � � c� � � cmd � � � c� � � cmd

� � c�� c� � � cmd

�if� � � e � �� � � c� � � cmd � � � c� � � cmd

� � if e then c� else c� � � cmd

�while� � � e � L� � � c � L cmd

� � while e do c � L cmd

�protect� � � c � � cmd

� � protect c � � cmd

�base� L � H

�reflex� � � �

�cmd�� �� � ��
�� cmd � �� cmd

�subtype� � � p � ��� �� � ��
� � p � ��

Figure 2. Typing and subtyping rules

�� �f� �� while l � � do skip� � �� �l �� ��g� �l �� ���
�� �f� �� while l � � do skipg� �l �� ���
�� �f� �� skip �while l � � do skip � � �� �l �� ��g� �l �� ���
�� �f� �� skip �while l � � do skipg� �l �� ���
�� �f g� �l �� ���

Figure 3. States of Markov chain

�

f�f� �� while l � � do skip� � �� �l �� ��g� �l �� ��� � �g
��

�f� �� while l � � do skipg� �l �� ��� � ����
�f� �� skip�while l � � do skip� � �� �l �� ��g� �l �� ��� � ���

�

���
�

�f g� �l �� ��� � ����
�f� �� while l � � do skip� � �� �l �� ��g� �l �� ��� � ����
�f� �� skip �while l � � do skipg� �l �� ��� � ���

��
�

���
�

�f g� �l �� ��� � ����
�f� �� skip �while l � � do skip� � �� �l �� ��g� �l �� ��� � ��
�
�f� �� while l � � do skipg� �l �� ��� � ��

��
�

���
�

�f g� �l �� ��� � ��
�
�f� �� while l � � do skip � � �� �l �� ��g� �l �� ��� � �����
�f� �� skip�while l � � do skipg� �l �� ��� � ����

��
�

Figure 5. A probabilistic state sequence

ve probabilistic states in the sequence are depicted in
Figure �	 The
fth state� for instance� tells us that the
probability that O terminates under memory �l �� ��
in at most four steps is ��
	

Thread pool O is an example of a concurrent pro�
gram that is probabilistically total since it halts with
probability �� but is not nondeterministically total for
it has an in
nite computation path	

Note that although there may be in
nitely many
states in the Markov chains corresponding to our pro�
grams� the probabilistic states that arise in our pro�
gram executions will only assign nonzero probability
to
nitely many of them	 This is because we begin
execution in a single global con
guration �O� ��� and
we only branch by at most a factor of k at each step�
where k is the number of threads in O	 If we were
to extend our language with a random number gener�
ator that returns an arbitrary integer with respect to
some probability distribution� then we would have to
consider probabilistic states which give nonzero prob�
abilities to an in
nite number of global con
gurations	

With probabilistic states� we can now see how prob�
ability distributions can be sensitive to initial values of
high variables� even for programs that have types in
the system of Figure �	 Consider the example in the
introduction where c is instantiated to skip�

O �

�
� �� �if x � � then skip� skip�� y �� ��
� �� �skip� y �� ��

�

Each thread is well typed� assuming skip has type
H cmd 	 We give two sequences of state transitions	
One begins with x equal to � �Figure �� and the other

with x equal to � �Figure ��	 Notice the change in dis�
tribution for the
nal values of y when the initial value
of the high variable x changes	 For instance� the proba�
bility that y has
nal value � when x equals � is ������
and falls to ��� when x equals �	 What is going on
here is that the initial value of x a�ects the amount of
time required to execute the conditional� this in turn
a�ects the likely order in which the two assignments
to y are executed	 Now suppose that we protect the
conditional in this example	 Then the conditional �in
e�ect� executes in one step� regardless of the value of
x� and so the sequence of transitions for x � � is equiv�
alent� state by state� to the sequence of transitions for
x � � �Figures
 and ��	

�� Probabilistic noninterference

Now we are ready to prove our main result	 We
begin with two lemmas which are proved in �����

Lemma ��� �Simple Security� If � � e � L� then

��x� � L for every identi�er x in e�

Lemma ��� �Con�nement� If � � c � H cmd� then

��x� � H var for every identi�er x assigned to in c�

De�nition ��� �Protected� A command is pro�
tected if every conditional in the command with a guard

of type H falls within the scope of a protect�

De�nition ��� Given an identi�er typing �� we say

that memories � and
 are equivalent� written ���
�
if ��
� and � have the same domain and � and
 agree

on all L identi�ers�

�

f�f� �� �if x � � then skip� skip�� y �� �� � �� �skip � y �� ��g� �x �� �� y �� ��� � �g
��

�f� �� �if x � � then skip� skip�� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �� � �� �skip� y �� ��g� �x �� �� y �� ��� � ���

�

���
�

�f� �� �if x � � then skip � skip�� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� �skip � y �� ��g� �x �� �� y �� ��� � ���

��
�

��
�f� �� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �g� �x �� �� y �� ��� � ���

�

��
�f g� �x �� �� y �� ��� � ����
�f g� �x �� �� y �� ��� � ���

�

Figure 6. Probabilistic state sequence when x � �

f�f� �� �if x � � then skip� skip�� y �� �� � �� �skip � y �� ��g� �x �� �� y �� ��� � �g
��

�f� �� �if x � � then skip� skip�� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� �skip� skip�� y �� �� � �� �skip� y �� ��g� �x �� �� y �� ��� � ���

�

���
�

�f� �� �if x � � then skip � skip�� y �� �g� �x �� �� y �� ��� � ����
�f� �� �skip � skip�� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� skip � y �� �� � �� �skip� y �� ��g� �x �� �� y �� ��� � ���

��
�

���
�

�f� �� �skip� skip�� y �� �g� �x �� �� y �� ��� � ����
�f� �� skip� y �� �� � �� y �� �g� �x �� �� y �� ��� � ��
�
�f� �� y �� �� � �� �skip � y �� ��g� �x �� �� y �� ��� � ��

��
�

���
�

�f� �� skip� y �� �g� �x �� �� y �� ��� � ������
�f� �� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� �skip� y �� ��g� �x �� �� y �� ��� � ����

��
�

��
�f� �� y �� �g� �x �� �� y �� ��� � ������
�f� �� y �� �g� �x �� �� y �� ��� � ����

�

��
�f g� �x �� �� y �� ��� � ������
�f g� �x �� �� y �� ��� � ����

�

Figure 7. Probabilistic state sequence when x � �

�

f�f� �� �protect if x � � then skip� skip�� y �� �� � �� �skip� y �� ��g� �x �� �� y �� ��� � �g
��

�f� �� �protect if x � � then skip� skip�� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �� � �� �skip� y �� ��g� �x �� �� y �� ��� � ���

�

���
�

�f� �� �protect if x � � then skip� skip�� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� �skip � y �� ��g� �x �� �� y �� ��� � ���

��
�

��
�f� �� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �g� �x �� �� y �� ��� � ���

�

��
�f g� �x �� �� y �� ��� � ����
�f g� �x �� �� y �� ��� � ���

�

Figure 8. Probabilistic state sequence when x � �

f�f� �� �protect if x � � then skip� skip�� y �� �� � �� �skip� y �� ��g� �x �� �� y �� ��� � �g
��

�f� �� �protect if x � � then skip� skip�� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �� � �� �skip� y �� ��g� �x �� �� y �� ��� � ���

�

���
�

�f� �� �protect if x � � then skip� skip�� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �� � �� y �� �g� �x �� �� y �� ��� � ����
�f� �� �skip � y �� ��g� �x �� �� y �� ��� � ���

��
�

��
�f� �� y �� �g� �x �� �� y �� ��� � ����
�f� �� y �� �g� �x �� �� y �� ��� � ���

�

��
�f g� �x �� �� y �� ��� � ����
�f g� �x �� �� y �� ��� � ���

�

Figure 9. Probabilistic state sequence when x � �

We now show that if we execute a well�typed� pro�
tected command c in two equivalent memories� the two
executions proceed in lock step�

Lemma ��� �Lock Step Execution� Suppose c is

well typed under � and protected� and that ���
�

If �c� ��
s
���c�� ���� then there exists
� such that

�c�
�
s
���c��
�� and ����

�� And if �c� ��
s
����� then

there exists
� such that �c�
�
s
��
� and ����

��

Proof� By induction on the structure of c	 The interest�
ing cases are the protect command and conditionals	
In particular� we need only consider conditionals with
guards of type L since those with guards of type H are
protected and therefore fall under the protect case	

For conditionals with guards e of type L� the the�
orem follows from Lemma �	� which guarantees that
��e� �
�e�� and therefore evaluation of the condi�
tional under
 may proceed along the same branch as
the evaluation under �	

Now suppose �protect c� ��
s
���� and ���
	 Then

by rule atomicity�

� � c� ��

By the Termination Agreement theorem �Theorem �	��
������ there is a memory
� such that
 � c �
� and

����

�	 Thus� �protect c�
�

s
��
�	

Now we wish to extend the Lock Step Execution
lemma to probabilistic states	 First� we need a notion
of equivalence among probabilistic states	 The basic
idea is that two probabilistic states are equivalent un�
der � if they are the same after any high variables are
projected out	 Suppose� for example� that x � H and
y � L	 Then��

�
�O� �x �� �� y �� ��� � ����
�O� �x �� �� y �� ��� � ����
�O�� �x �� �� y �� ��� � ���

��
�

is equivalent to

f�O� �x �� �� y �� ��� � ���� �O�� �x �� �� y �� ��� � ���g�

because in each case the result of projecting out the
high variable x is

f�O� �y �� ��� � ���� �O�� �y �� ��� � ���g�

Notice that projecting out high variables can cause sev�
eral con
gurations to collapse into one� requiring that
their probabilities be summed	 More formally� we de�

ne equivalence as follows��

�De
nition ��� here di�ers from the one in the workshop pro�

ceedings� The one in the proceedings is incorrect�

De�nition ��� Given identi�er typing � and memory

�� let �� denote the result of erasing all high variables

from �� And given probabilistic state s� let the projec�

tion of s onto the low variables of �� denoted s� � be

de�ned by

s��O� ��� �
X

� such that ����

s�O�
�

Finally� we say that probabilistic states s and s� are

equivalent under �� written s��s
�� if s� � s���

Next we say that a probabilistic state s is well typed
and protected under � if for every global con
guration
�O� �� with s�O� �� 	 �� every thread in O is well typed
and protected under �� and dom��� � dom���	

For any global con
guration �O� ��� the point mass

on �O� ��� denoted ��O���� is the probabilistic state that
that gives probability � to �O� �� and probability � to
all other global con
gurations	

Now we can show� as a corollary to the Lock Step
Execution lemma� that �� is a congruence with re�
spect to the stochastic matrix T on well�typed� pro�
tected point masses	

Lemma ��� �Congruence on Point Masses� If �
and �� are well�typed� protected point masses such that

����
�� then �T���

�T �

Proof� Since ����
�� there must exist a thread pool O

and memories � and
 such that � � ��O���� �
� � ��O����

and ���
	
If O � f g� then by third �global� rule� we see that

�T � � and ��T � ��	 So �T���
�T 	

Now suppose that O is nonempty	 We show that
for every �O�� ��� where ��T ��O�� ��� 	 �� there is a

� such that ����

� and ��T ��O�� ��� � ���T ��O��
��	
So suppose �O�� ��� is a global con
guration and
��T ��O�� ��� 	 �	 Since � is a point mass�

��T ��O�� ��� � T ��O� ��� �O�� ����

Therefore� T ��O� ��� �O�� ���� 	 �	 By the de
nition
of T � then� T ��O� ��� �O�� ���� � ��jOj and there is a
thread � and command c such that O��� � c and either

�	 �c� ��
s
���c�� ��� and O� � O�� �� c��� or else

�	 �c� ��
s
���� and O� � O � �	

In the
rst case� we have� by the Lock Step
Execution lemma� that there exists
� such that
�c�
�

s
���c��
�� and ����

�	 Then� by rule �global��

�O�
�
g
����jOj�O�� �� c���
��� so by de
nition of T �

T ��O�
�� �O��
��� � ��jOj

�

But �� is also a point mass� therefore

���T ��O��
�� � T ��O�
�� �O��
���

Thus� ��T ��O�� ��� � ��jOj � ���T ��O��
��	 The second
case above is similar	

So for a given con
guration �O� ��� if ���
 and
��T ��O�
� 	 �� then there exists
� such that
���

and ���T ��O�
�� � ��T ��O�
� from above	 Since

����� ��

�T ��O�
�� must be in the sum ���T ���O� ���	
Therefore� ��T ���O� ��� 	 ���T ���O� ���	 Symmetri�
cally� we have ��T ���O� ���
 ���T ���O� ��� and so
��T �� � ���T �� � or �T���

�T 	

Now we wish to generalize the above Congruence
lemma from point masses to arbitrary probabilistic
states� this generalization is a direct consequence of the
linearity of T 	 More precisely� the set of all measures
forms a vector space if we de
ne

� �s� s���O� �� � s�O� �� � s��O� ��� for measures s
and s�� and

� �as��O� �� � a�s�O� ���� for real a and measure s	

With respect to this vector space� T is a linear trans�
formation	 Furthermore� �� respects the vector space
operations�

Lemma ��� If si��s
�
i for all i� then

a�s� � a�s� � a�s� � � � � �� a�s
�
� � a�s

�
� � a�s

�
� � � � �

Theorem ��	 �Probabilistic Noninterference� If

s and s� are well�typed� protected probabilistic states

such that s��s
�� then sT��s

�T �

Proof� To begin with� we argue that s and s� can be
expressed as �possibly countably in
nite� linear combi�
nations of �not necessarily distinct� point masses such
that the corresponding coe�cients are the same� and
the corresponding point masses are equivalent	

Now� we know that we can express s and s� as linear
combinations of point masses�

s � a��� � a��� � a��� � � � �

and

s� � b��
�
� � b��

�
� � b��

�
� � � � �

Assume� for now� that s� �and s��� is a point mass	
That is� �i �� �j �� ��i �� ��j for all i and j	

Note that the ai�s and bi�s both sum to �� hence
they both can be understood as partitioning the unit
interval ��� ���

b� b� b� b� � � �

a� a� a� � � �

� �

To unify the coe�cients in the two linear combinations�
we must take the union of the two partitions� splitting
up any terms that cross partition boundaries	 For ex�
ample� based on the picture above we would split the
term a��� of s into b�����a��b����	 And we would split
the term b��

�
� of s

� into �a� � b���
�
� � �b� � �a� � b����

�
�	

Continuing in this way� we can unify the coe�cients of
s and s�	

We can describe the splitting process more precisely
as follows	 We simultaneously traverse s and s�� split�
ting terms as we go	 Let a� and b�� be the next terms
to be uni
ed	 If a � b� then keep both these terms
unchanged	 If a � b� then keep term a� in s� but split
b�� into a�� and �b � a��� in s�	 Handle the case a 	 b
symmetrically	 If one or both of the sums are in
nite�
then of course the algorithm gives an in
nite sum	 But
each term of s and of s� is split only
nitely often �oth�
erwise the ai�s and bi�s would not have the same sum�
with one exception�if s is a
nite sum and s� is an
in
nite sum� then the last term of s is split into an
in
nite sum	

So far� we have shown how to unify the coe�cients of
s and s� in the case where s� �and s��� is a point mass	
In the general case� s and s� must
rst be rearranged
into sums of sums of equivalent point masses�

s � �a������a������ � � ��� �a������a������ � � ��� � � �

and

s� � �b���
�
��� b���

�
��� � � ��� �b���

�
��� b���

�
��� � � ��� � � �

where �ij �� �ik �� ��ij �� ��ik for all i� j� and k	 Also�
for each i�

P
j aij �

P
j bij 	 Hence we can apply the

algorithm above to unify the a�j �s with the b�j �s� the
a�j �s with the b�j �s� and so forth	 Then we can form a
single sum for s and for s� by interleaving these sums
in a standard way	

The
nal result of all this e�ort is that we can ex�
press s and s� as

s � c��
��
� � c��

��
� � c��

��
� � � � �

and

s� � c��
���
� � c��

���
� � c��

���
� � � � �

where ���i �� ����i for all i	 Now� since T is a linear
transformation� we have

sT � c���
��
�T � � c���

��
�T � � c���

��
�T � � � � �

��

and

s�T � c���
���
� T � � c���

���
� T � � c���

���
� T � � � � �

By the Congruence on Point Masses Lemma� we have
���i T �� ����i T � for all i	 So� by the lemma above�
sT �� s�T 	

�� Discussion

The need for a probabilistic view of security in non�
deterministic computer systems has been understood
for some time ��
� ���	 Security properties �models�
to treat probabilistic channels in nondeterministic sys�
tems have been formulated by McLean���� and Gray
��� ��	 It is important� however� to recognize that these
e�orts address a di�erent problem than what we con�
sider in this paper	 They consider a computer sys�
tem with a number of users� classi
ed as high or low�
who send inputs to and receive outputs from the sys�
tem	 The problem is to prevent high users� who have
access to high information� from communicating with
low users� who should have access only to low infor�
mation	 What makes treating privacy in this setting
especially di�cult is that users need not be processes
under control of the system�they may be people� who
are external to the system and who can observe the
system�s behavior from the outside	 As a result� a high
user may be able to communicate covertly by modu�
lating system performance to encode high information
that a low user in turn decodes using a real�time clock
outside the system	 Furthermore� because the low user
is measuring real time� the modulations can depend on
low�level system implementation details� such as the
paging and caching behavior of the underlying hard�
ware	 This implies that it is not enough to prove pri�
vacy with respect to a high�level� abstract system se�
mantics �like the semantics of Figure ��	 To guarantee
privacy� it is necessary for the system model to address
all the implementation details	

In a mobile�code framework� where hosts are
trusted� ensuring privacy is more tractable	 A key as�
sumption here is that any attempt to compromise pri�
vacy must arise from within the mobile code� which is
internal to the system	 As a result� the system can
control what the mobile code can do and what it can
observe	 For example� if mobile�code threads are not
allowed to see a real�time clock� then they can measure
the timing of other threads only by observing variations
in thread interleavings	 Hence� assuming a correct im�
plementation of the semantics in Figure �� threads will
not be able to detect any variations in the running time
of a protected command� nor will they be able to de�
tect timing variations due to low�level implementation

details	 Consequently� timing attacks are impossible in
well�typed� protected programs in our language	 For
instance� Kocher describes a timing attack on RSA ���	
Basically� he argues that an attacker can discover a pri�
vate key x by observing the amount of time required
by several modular exponentiations yx mod n	 Under
our framework� the modular exponentiation would be
protected�� which means that no useful timing informa�
tion about exponentiation would be available to other
threads�it would always appear to execute in exactly
one step	

�� Other related research

Other work in secure information �ow� in a par�
allel setting� includes that of Andrews and Reitman
���� Melliar�Smith and Moser ����� Focardi and Gorri�
eri ��� ��� and Banatre and Bryce ���	 Melliar�Smith
and Moser consider covert channels in Ada	 They de�
scribe a data dependency analysis to
nd places where
Ada programs depend on the relative timing of opera�
tions within a system	 Andrews and Reitman give an
axiomatic �ow logic for treating information �ow in the
presence of process synchronization	 They also sketch
how one might treat timing channels in the logic	 Ba�
natre and Bryce give an axiomatic �ow logic for CSP
processes� also treating information �ow arising from
synchronization	 None of these e�orts� though� gives a
satisfactory account of the security properties that they
guarantee	 Focardi and Gorrieri identify trace�based
and bisimulation�based security properties for systems
expressed in an extension of Milner�s CCS� which they
call the Security Process Algebra	 These properties�
however� are possibilistic in nature �e	g	 a system is
SNNI ��� if the set of traces that a low observer can
see of a system is possible regardless of whether high�
level actions are enabled or disabled in the system�	

�� Conclusion

So what is the signi
cance of our result� It depends
on what can be observed	 With respect to internal pro�
gram behavior� our Probabilistic Noninterference result
rules out all covert �ows from high variables to low
variables	 But if external observation of the running
program is allowed� then of course covert channels of
the kind discussed in Section � remain possible	 In this
case� more elaborate security properties� like Gray�s
information �ow security ���� may be needed	 Note�

�Because we do not allow while commands to occur within

protected sections� this requires that we program the modular ex�

ponentiation in terms of a primitive recursive looping construct�

��

however� that the mobile code setting a�ords us more
control over external observations than would normally
be possible	 When we execute some mobile code on our
machine� we can limit communication with the outside
world� preventing precise observations of a program�s
execution time� for example	

References

��� G� Andrews and R� Reitman� An axiomatic approach
to information �ow in programs� ACM Transactions

on Programming Languages and Systems� ����	
��
��
�����

��� J� Ban�atre and C� Bryce� Information �ow control in a
parallel language framework� In Proceedings �th IEEE

Computer Security Foundations Workshop� pages ���

�� June �����

��� W� Feller� An Introduction to Probability Theory and

Its Applications� volume I� John Wiley � Sons� Inc��
third edition� �����

��� R� Focardi and R� Gorrieri� A classi�cation of security
properties for process algebras� Journal of Computer

Security� ����	
���� ��������
�

�
� R� Focardi and R� Gorrieri� The compositional security
checker	 A tool for the veri�cation of information �ow
security properties� IEEE Transactions on Software

Engineering� �����	

��

�� ���
�

��� J� W� Gray� III� Probabilistic interference� In Proceed�

ings ���� IEEE Symposium on Security and Privacy�
pages �
���
�� Oakland� CA� May �����

�
� J� W� Gray� III� Toward a mathematical foundation
for information �ow security� In Proceedings ����

IEEE Symposium on Security and Privacy� pages ���
��� Oakland� CA� May �����

��� N� Heintze and J� Riecke� The SLam Calculus	 Pro�
gramming with secrecy and integrity� In Proceedings

��th Symposium on Principles of Programming Lan�

guages� pages ��
��

� San Diego� CA� Jan� �����

��� P� Kocher� Timing attacks on implementations of
Di�e�Hellman� RSA� DSS and other systems� In Pro�

ceedings ��th Annual Crypto Conference� Aug� �����

���� D� Kozen� Semantics of probabilistic programs� Jour�
nal of Computer and System Sciences� ��	�����
��
�����

���� J� McLean� Security models and information �ow� In
Proceedings ���� IEEE Symposium on Security and

Privacy� pages ������
� Oakland� CA� �����

���� J� McLean� Security models� In J� Marciniak� editor�
Encyclopedia of Software Engineering� Wiley Press�
�����

���� P� Melliar�Smith and L� Moser� Protection against
covert storage and timing channels� In Proceedings

�th IEEE Computer Security Foundations Workshop�
pages �������� June �����

���� H� R� Nielson and F� Nielson� Semantics with Appli�

cations� A Formal Introduction� Wiley� �����

��
� G� Smith and D� Volpano� Secure information �ow in
a multi�threaded imperative language� In Proceedings

��th Symposium on Principles of Programming Lan�

guages� pages �

����� San Diego� CA� Jan� �����
���� D� Volpano and G� Smith� Eliminating covert �ows

with minimum typings� In Proceedings ��th IEEE

Computer Security Foundations Workshop� pages �
��
���� June ���
�

��
� D� Volpano� G� Smith� and C� Irvine� A sound type
system for secure �ow analysis� Journal of Computer

Security� ������	��
���
� �����
���� J� T� Wittbold and D� M� Johnson� Information �ow in

nondeterministic systems� In Proceedings ���� IEEE

Symposium on Security and Privacy� pages ��������
Oakland� CA� May �����

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

